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Abstract

The paper presents various formulations of characteristics-based schemes in the framework of the artificial-

compressibility method for variable-density incompressible flows. In contrast to constant-density incompressible flows,

where the characteristics-based variables reconstruction leads to a single formulation, in the case of variable density

flows three different schemes can be obtained henceforth labeled as: transport, conservative and hybrid schemes. The

conservative scheme results in pseudo-compressibility terms in the (multi-species) density reconstruction. It is shown

that in the limit of constant density, the transport scheme becomes the (original) characteristics-based scheme for incom-

pressible flows, but the conservative and hybrid schemes lead to a new characteristics-based variant for constant density

flows. The characteristics-based schemes are combined with second and third-order interpolation for increasing the

computational accuracy locally at the cell faces of the control volume. Numerical experiments for constant density flows

reveal that all the characteristics-based schemes result in the same flow solution, but they exhibit different convergence

behavior. The multigrid implementation and numerical studies for variable density flows are presented in Part II of this

study.
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1. Introduction

The development of advanced computational models for variable density flows is motivated by several

application problems including chemical reactors [1,2]; multi-material mixing [3–5]; environmental flows

[6]; combustion engineering [7]; biological flow and mass transport [8]; highly stratified flows [9]; interfaces
between fluid of different density [10]; inertial confinement fusion [11]; and problems in astrophysics [12].

Depending on the application, variable density flows can feature low or high speeds, a range of spatial

and time scales as well as large density and temperature gradients, which in association with fast chemical

reaction rates can result in stiff numerical solutions and slow convergence rates.

Another area of variable density flows is that of incompressible fluids with large (discontinuous) density

variations (interfaces). Water/air free surface flow is a classical example, e.g., a water drop falling into a

pool of water. Other important examples are the filling of a cast metal mold with a molten metal alloy;

the production and transport of micron-sized ink drops during inkjet printer operation; as well as environ-
mental and combustion problems. Although the present paper is not concerned with discontinuous inter-

faces, for completeness we mention that the variable density formulations and algorithms used in the above

problems should be combined with special interface techniques such as volume tracking methods. These

methods have spawned a plethora of papers including an important review [13] and extensive reference

in textbooks [14], and continued development in ever more complex computational geometries. In addition

to the interface tracking approach [13,15], other approaches include utilization of interface-capturing

schemes (see, e.g., [16]) and hybrid approaches, e.g., [17,18].

A class of computational approaches that is frequently used for variable density problems is the pres-
sure-projection method [19]. Bell and Marcus [20] and later on Almgren et al. [21,22] have developed sec-

ond-order projection algorithms for variable-density incompressible flows. An extensive discussion of

robust fractional-step projection methods for variable density flows can be found in [23]. A recent review

of approximate and exact projection methods can also be found in [14]. Pressure-projection based methods

have also been used in conjunction with finite-element schemes, see e.g. [24,25]; in the latter an uncondition-

ally stable method was developed based on two projections per time step and its performance was investi-

gated both in finite volume and finite-element implementations.

Another family of methods for solving incompressible flows is based on the artificial compressibility
formulation of Chorin [26]. The artificial compressibility approach circumvents the difficulty of the pres-

sure decoupling in the incompressible Navier–Stokes equations by adding a pseudo-time pressure deriv-

ative to the continuity equation. The new system of equations can then be iterated in pseudo-time until

the divergence-free flow field is satisfied. The method can be used both for steady and unsteady flows

and there are a number of papers in the literature describing implicit and explicit strategies for solving

steady and unsteady flow problems in conjunction with the artificial compressibility [14,27–38]. The

artificial compressibility method leads to hyperbolic and hyperbolic-parabolic equations for inviscid

and viscous incompressible (constant density) flows, respectively. The discretization schemes and solvers
developed for artificial compressibility have many similarities with the methods developed for compress-

ible flows. Therefore, numerical developments for compressible flows can be transferred to incompress-

ible flows.

Although the artificial compressibility has been used extensively for constant density flows, the develop-

ment of numerical schemes in the framework of artificial compressibility for variable, density incompress-

ible flows has received scant attention in the literature. Riedel [39] used artificial compressibility

formulation to construct an unstructured finite volume method for the solution of 2-D steady viscous,

incompressible, reacting flows, while Pan and Chang [40] developed a surface-capturing total variation
diminishing (TVD) method with slope modification for multi-fluid incompressible Navier–Stokes formula-

tion. Finally, Quian et al. [41] developed interface-capturing high-resolution Godunov-type scheme for

hydraulic flow problems.
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The aim of the present work is to develop high-resolution, characteristics-based schemes, in conjunction

with the artificial compressibility approach for variable-density incompressible flows. High-resolution

methods have attracted the interest of researchers in a broad range of application problems. A detailed

account of the theory, numerical design practices and computational implementation of high-resolution

methods for incompressible and low-speed flows can be found in [14]. These methods can provide high spa-
tial accuracy and accurate representation of the flow physics, thus allowing accurate solutions to be

obtained on moderate grids. The origin of the characteristics-based schemes derived here can be found

in previous works dealt with compressible [42] and incompressible (constant density) flows [14,36]. Using

the artificial compressibility framework, in the present paper we derive characteristics-based schemes for

variable-density, multi-species flows.

In Part I, we present the derivation of characteristics-based schemes and assess the accuracy and effi-

ciency of these schemes in the limit of constant-density incompressible flows. The implementation of the

schemes in conjunction with multigrid acceleration techniques and numerical studies that assess the accu-
racy and efficiency of the schemes in variable density flows, are presented in Part II of this study.
2. Problem formulation

Constant density incompressible flows are governed by the continuity and momentum equations

[14,43,44]:
r �~u ¼ 0; ð1Þ
o~u
ot

þ ð~u � rÞ~u ¼ � 1

q
rp þ mr2~u. ð2Þ
In the above equations,~u is the velocity vector with components (u,v,w) for the three Cartesian directions

(x,y,z), respectively; q is the fluid density; p is the pressure; and m denotes viscosity.

For incompressible flows, the decoupling between continuity and momentum equations is due to the

absence of the pressure from the former. This can be circumvented by using the artificial approach of

Chorin [26], which introduces a pseudo-time pressure derivative in the continuity equation (s is the pseudo-
time),
1

b
op
os

þr �~u ¼ 0; ð3Þ
where b is the artificial compressibility parameter that needs to be properly chosen in order to achieve

numerical convergence. For steady state problems, (3) is solved along with the momentum equations until

the pseudo-time pressure derivative vanishes. For unsteady problems a similar procedure is applied and this

is discussed below.

For multispecies flows, (2) needs to be written in a form that takes into account the varying local

viscosity, ml. Moreover, the equations can become dimensionless by introducing the local Reynolds number

Rel = U0L/ml, where U0 and L denote reference values for the velocity and spatial dimension, respectively,

while ml is the local kinematic viscosity. One can also introduce a reference (constant) viscosity m0 and define
the corresponding Reynolds number, based on m0, as Re = Relml/m0. The dimensionless form of (2) is then

given by
o~u
ot

þ ð~u � rÞ~u ¼ � 1

q
rp þ 1

Rel
r2~u. ð4Þ
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Calculation of the local viscosity for a mixture of fluids may be not a trivial problem. For immiscible fluids,

calculation of the local fluid properties is reduced to the determination of the interface position, which is

equivalent to the solution of convection equations for fluid properties [17,45]. However, for miscible fluids

local fluid properties should be computed using approximate methods (see, e.g., [46]). Alternatively, the

local viscosity can be determined by a volume weighted average [47] and this is the approach followed here.
In addition to the basic fluid flow equations, for multi-species flow problems advection-diffusion equa-

tions are added to the system for tracing species propagation. The advection-diffusion equations can be

casted in terms of molecular concentrations, mass fractions, mole fractions, etc. The choice of formulation

depends on which representation is more convenient for each particular problem. In the present paper, we

have chosen to cast the equations in terms of partial densities, qi. For a flow containing N species, the total

density is defined by the sum of partial densities q ” Rqi (i = 1,N). The advection-diffusion equations for

species transport are given by
oqi

ot
þ ð~u � rÞqi ¼

1

Pe
r �

Xl¼N

l¼1

Dm
liqr

ql

q

 !
. ð5Þ
In the above equation, Pe = U0L/D and Dm
li ¼ Dm�

li =D stand for the Peclet number and the normalized multi-

component diffusion coefficients, respectively, where D is a reference diffusion coefficient and Dm�
li are the

elements of the dimensional, multicomponent N · N diffusion matrix. In pure diffusion problems the equa-

tions for species transport (5) should be solved for all species [45]. When the flow equations are solved

simultaneously with the advection-diffusion equations for species transport, it is more convenient to solve

the advection equation for the total density of the flow. Because in this case the system of equations

becomes overdefined – the equation for total density can be obtained as a sum of equations for partial den-

sities – the system for species transport can be reduced to (N � 1) equations for partial densities qi, i.e.
oq
ot þ ð~u � rÞq ¼ 0;

oqi
ot þ ð~u � rÞqi ¼ 1

Per �
PN�1

l¼1

Dliqr ql
q

� �
;

i ¼ 1; N � 1;

8>>><
>>>:

ð6Þ
where Dli are the elements of the reduced (N � 1) · (N � 1) matrix [48]. Generally, there is not a broadly

established definition or solution for multi-component and reduced diffusion matrices apart from the
dilute-gas limit [49]. In this paper, the reduced diffusion matrix is considered to be known. For a steady-

state flow problem the equations to be solved are (2), (3) and (6). The artificial compressibility approach

can also be used for time-dependent flow problems using the dual-time stepping technique [30,32], which

results in adding a pseudo-time derivative in the momentum equations as well. For the variable-density flow

case, pseudo-time density derivatives also need to be added to the species transport equations, thus yielding

the following system of equations
o~u
os ¼ � o~u

ot � ðð~u � rÞ~uþ 1
qrp � 1

Rel
r2~uÞ;

op
os ¼ �br �~u;
oq
os ¼ � oq

ot � ð~u � rÞq;
oqi
os ¼ � oqi

ot � ð~u � rÞqi � 1
Per �

PN�1

l¼1

Dliqr ql
q

� �� �
.

8>>>>>>><
>>>>>>>:

ð7Þ
At each real time step, t, the solution of (7) is obtained by iterating in pseudo-time s until convergence is

achieved within a prescribed convergence tolerance; thus driving the pseudo-time derivatives to zero and

satisfying the incompressibility (divergence free) condition at each real time step.



588 E. Shapiro, D. Drikakis / Journal of Computational Physics 210 (2005) 584–607
Wewrite the system (7) in conservative form for the vector of unknown variablesU = (p/b,qu,qv,qw,q,qi)
T

and introduce the inviscid (EI
c,FI

c,GI
c) and viscous (EV

c,FV
c,GV

c) flux vectors for Cartesian coordinates

(x,y,z):
oU

os
¼ � oUr

ot
þ oEc

V

ox
þ oFc

V

oy
þ oGc

V

oz
� oEc

I

ox
� oFc

I

oy
� oGc

I

oz
; ð8Þ
where Ur = (0,qu,qv,qw,q,qk)
T and the inviscid and viscous fluxes are given by
Ec
I ¼ ðu; qu2 þ p; quv;quw; qu; qiuÞ

T
;

Fc
I ¼ ðv; quv; qv2 þ p; qvw; qv; qivÞ

T
;

Gc
I ¼ ðw; quw; qvw; qw2 þ p; qw; qiwÞ

T

8><
>: ð9Þ
and
Ec
V ¼ 0; sxx; sxy ; sxz; 0; 1

Pe

PN�1

l¼1

Dliq
oql=q
ox

� �T

;

Fc
V ¼ 0; syx; syy ; syz; 0; 1

Pe

PN�1

l¼1

Dliq
oql=q
oy

� �T

;

Gc
V ¼ 0; szx; szy ; szz; 0; 1

Pe

PN�1

l¼1

Dliq
oql=q
oz

� �T

;

8>>>>>>>>><
>>>>>>>>>:

ð10Þ
respectively, where sij stand for the components of the viscous stress tensor. Let us consider an arbitrary

curvilinear system (n(x,y,z), g(x,y,z), f(x,y,z)) where the Jacobian of the transformation is given by

J ¼ oðx;y;zÞ
oðn;g;fÞ

��� ���. The system of (8) can be written in curvilinear coordinates (see, for example, [14]) as
oJU
os

¼ � oJUr

ot
þ oEV

on
þ oFV

og
þ oGV

of
� oEI

on
� oFI

og
� oGI

of
. ð11Þ
The inviscid, (EI,FI,GI), and viscous, (EV,FV,GV), fluxes can be written in curvilinear coordinates as
EI ¼ J Ec
I
on
ox þ Fc

I
on
oy þGc

I
on
oz

� �
;

FI ¼ J Ec
I
og
ox þ Fc

I
og
oy þGc

I
og
oz

� �
;

GI ¼ J Ec
I
of
ox þ Fc

I
of
oy þGc

I
of
oz

� �
;

EV ¼ J Ec
V

on
ox þ Fc

V
on
oy þGc

V
on
oz

� �
;

FV ¼ J Ec
V

og
ox þ Fc

V
og
oy þGc

V
og
oz

� �
;

GV ¼ J Ec
V

of
ox þ Fc

V
of
oy þGc

V
of
oz

� �
.

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð12Þ
Using the above notation, in the next section we present the derivation of characteristics-based schemes for

variable-density incompressible flows.
3. Characteristics-based schemes

Both the advective and viscous fluxes are discretized on the cell centres using the intercell values (Fig. 1),

e.g.,



x

y

z

i,j,k
(i-1/2,j,k )

(i+1/2,j,k)

Fig. 1. Computational cell notation.
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oEI

on
¼

ðEIÞiþ1
2
;j;k � ðEIÞi�1

2
;j;k

Dn
. ð13Þ
Let us consider (11) retaining only the inviscid part of the operator and omitting the derivative in real time.
The latter can be treated as a source term without affecting the derivation of the characteristics-based

scheme. Then (11) is written
oJU
os

þ oEI

on
þ oFI

og
þ oGI

of
¼ oJU

os
þ
oJ Ec

I
on
ox þ Fc

I
on
oy þGc

I
on
oz

� �
on

þ
oJ Ec

I
og
ox þ Fc

I
og
oy þGc

I
og
oz

� �
og

þ
oJ Ec

I
of
ox þ Fc

I
of
oy þGc

I
of
oz

� �
of

¼ J
oU

os
þ J

on
ox

oEc
I

on
þ on
oy

oFc
I

on
þ on

oz
oGc

I

on

� �
þ J

og
ox

oEc
I

og
þ og
oy

oFc
I

og
þ og

oz
oGc

I

og

� �

þ J
og
ox

oEc
I

og
þ og
oy

oFc
I

og
þ og

oz
oGc

I

og

� �
þ Ec

I

o

on
J
on
ox

� �
þ o

og
J
og
ox

� �
þ o

of
J
of
ox

� �� �

þ Fc
I

o

on
J
on
oy

� �
þ o

og
J
og
oy

� �
þ o

of
J
of
oy

� �� �

þGc
I

o

on
J
on
oz

� �
þ o

og
J
og
oz

� �
þ o

of
J
of
oz

� �� �
; ð14Þ
where the brackets in the last three terms are zero (this can be shown by substituting the expression for the

Jacobian into the brackets and performing differentiation). We consider the one-dimensional counterpart of

(14), with respect to the n-direction (for non-moving grids),
oU

os
þ on

ox
oEc

I

on
þ on

oy
oFc

I

on
þ on

oz
oGc

I

on
¼ 0; ð15Þ
divide by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðon
ox Þ

2 þ ðon
oy Þ

2 þ ðon
oz Þ

2
q

and introduce the notation
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L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on
ox

� �2

þ on
oy

� �2

þ on
oz

� �2
s

ð16Þ
and ~k ¼ 1
L

on
ok, where k = x,y,z. Eq. (15) can then be written as a system of equations
1
bL

op
os þ ~x ou

on þ ~y ov
on þ ~z ow

on ¼ 0;

1
L

oðquÞ
os þ ~x oðqu2þpÞ

on þ ~y oðquvÞ
on þ ~z oðquwÞ

on ¼ 0;

1
L

oðqvÞ
os þ ~x oðquvÞ

on þ ~y oðqv2þpÞ
on þ ~z oðqvwÞ

on ¼ 0;

1
L

oðqwÞ
os þ ~x oðquwÞ

on þ ~y oðqvwÞ
on þ ~z oðqw2þpÞ

on ¼ 0;

1
L

oq
os þ ~x oðquÞ

on þ ~y oðqvÞ
on þ ~z oðqwÞ

on ¼ 0;

1
L

oqi
os þ ~x oðqiuÞ

on þ ~y oðqivÞ
on þ ~z oðqiwÞ

on ¼ 0;

i ¼ 1; N � 1.

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð17Þ
Eqs. (17) do not correspond to the system comprising of (1), (4) and (6) or (7) based on the artificial com-

pressibility formulation – unless we apply the divergence-free condition. For example, applying the diver-

gence-free condition to the density equations, we obtain the non-conservative form
1
L

oq
os þ ðu~xþ v~y þ w~zÞ oq

on ¼ 0;

1
L

oqi
os þ ðu~xþ v~y þ w~zÞ oqi

on ¼ 0;

i ¼ 1; N � 1;

8><
>: ð18Þ
which represents advection of density along streamlines. Eqs. (17) contain �non-physical� terms that are

divergence-velocity dependent and arise from the implementation of the artificial compressibility
approach, while Eqs. (18) correspond to (6) or (7) after implementing artificial-compressibility. Through

proper combinations of (17) and (18), one can derive three different formulations for Eqs. (17), which

in turn lead to different characteristics-based discretizations as we will present later. The three formu-

lations are:

Transport formulation: The equations for densities are written as advection equations in non-conserva-

tive form (18) and these are, subsequently, used to eliminate the total density from the momentum

equations (17).
Hybrid formulation: The conservative equation for the total density is used to eliminate density from the

momentum equations in (17). The latter are solved in conjunction with advection equations for species

transport (18).

Conservative formulation: Eqs. (17) are solved without taking into account (18).

The above three formulations converge to the same system of equations as the divergence of velocity

tends to zero, but they yield different characteristics-based (CB) schemes. The derivation of these schemes

is discussed below.
3.1. Transport CB scheme

The transport formulation leads to the following non-conservative system of equations:
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1
bL

op
os þ ~x ou

on þ ~y ov
on þ ~z ow

on ¼ 0;

1
L

ou
os þ ðu~xþ v~y þ w~zÞ ou

on þ ð~x ou
on þ ~y ov

on þ ~z ow
onÞuþ 1

q
op
on~x ¼ 0;

1
L

ov
os þ ðu~xþ v~y þ w~zÞ ov

on þ ð~x ou
on þ ~y ov

on þ ~z ow
onÞvþ 1

q
op
on ~y ¼ 0;

1
L

ow
os þ ðu~xþ v~y þ w~zÞ ow

on þ ð~x ou
on þ ~y ov

on þ ~z ow
onÞwþ 1

q
op
on~z ¼ 0;

1
L

oq
os þ ðu~xþ v~y þ w~zÞ oq

on ¼ 0;

1
L

oqi
os þ ðu~xþ v~y þ w~zÞ oqi

on ¼ 0;

i ¼ 1; N � 1.

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð19Þ
Introducing the vector of non-conservative variables, Unc ¼ ðpb ; u; v;w; q; qiÞ, (19) can be written in a matrix

form
1

L
oUnc

os
þ A

oUnc

on
¼ 0; ð20Þ
where A, (4 + N) · (4 + N), is given by
A ¼

0 b~x b~y b~z 0 0 . . . 0
1
q~x k0 þ u~x u~y u~z 0 0 . . . 0

1
q ~y v~x k0 þ v~y v~z 0 0 . . . 0

1
q~z w~x w~y k0 þ w~z 0 0 . . . 0

0 0 0 0 k0 0 . . . 0

0 0 0 0 0 k0 . . . 0

. . . . . . . . . .

0 0 0 0 0 0 . . . k0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

; ð21Þ
with the columns and rows from 6 to N + 4 corresponding to the species densities.

The matrix A has the following distinct eigenvalues: N + 2 eigenvalues k0 ¼ u~xþ v~y þ w~z and the

eigenvalues k1 = k0 + s and k2 = k0 � s, where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ b=q

q
is the artificial speed of sound. Our objec-

tive is to derive solutions for the primitive variables along the characteristics l = 0,1,2. Defining the

characteristic directions by Dn
Ds ¼

n�nl
Ds ¼ kl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

q
, the pseudo-time derivatives in (19) can be dis-

cretized as follows
of ðs; nÞ
os

ffi f ðsþ Ds; nÞ � f ðs; nÞ
Ds

¼ f ðsþ Ds; nÞ � f ðs; nlÞ
Ds

þ f ðs; nlÞ � f ðs; nÞ
Ds

¼ f ðsþ Ds; nÞ � f ðs; nlÞ
Ds

� Dn
Ds

f ðs; nlÞ � f ðs; nÞ
Dn

¼ f ðsþ Ds; nÞ � f ðs; nlÞ
Ds

� f ðs; nlÞ � f ðs; nÞ
Dn

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

q

ffi f ðsþ Ds; nÞ � f ðs; nlÞ
Ds

� of
on

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

q
¼

~f � f
Ds

� of
on

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

q
; ð22Þ
where ~f � f ðsþ Ds; nÞ and f ” f(s,nl) (see Fig. 2). Using (22), (19) is written:



i i+1i-1

τ+∆τ

τ
∆ξ

∆τ

ξ

ξΙ

Fig. 2. Schematic of characteristics-based discretization.
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1
bL

~p�pl
Ds � k

b pn þ ~x ou
on þ ~y ov

on þ ~z ow
on ¼ 0;

1
L

~u�ul
Ds þ ðk0 � kÞ ou

on þ ð~x ou
on þ ~y ov

on þ ~z ow
onÞuþ 1

q
op
on~x ¼ 0;

1
L

~v�vl
Ds þ ðk0 � kÞ ov

on þ ð~x ou
on þ ~y ov

on þ ~z ow
onÞvþ 1

q
op
on ~y ¼ 0;

1
L

~w�wl
Ds þ ðk0 � kÞ ow

on þ ð~x ou
on þ ~y ov

on þ ~z ow
onÞwþ 1

q
op
on~z ¼ 0;

1
L

~q�ql
Ds þ ðk0 � kÞ oq

on ¼ 0;

1
L

~qi�qil
Ds þ ðk0 � kÞ oqi

on ¼ 0;

i ¼ 1; N � 1.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð23Þ
To eliminate the spatial derivatives from (23) we make use of the idea presented in the book of Courant and

Hilbert [50] regarding elimination of unknowns in a system of linear equations, known as Riemann method.

According to [50], one can multiply each from the equations in (23) with arbitrary coefficients (a,b,c,d,e, fi,

i = 1,N � 1), sum up the equations, group the multipliers of spatial derivatives and set them equal to zero,

thus yielding the following system of equations:
a
b ð~p � plÞ þ bð~u� ulÞ þ cð~v� vlÞ þ dð~w� wlÞ þ eð~q� qlÞ þ

PN�1

i¼1

fið~qi � qilÞ ¼ 0;

�a q
b kl þ b~xþ c~y þ d~z ¼ 0;

a~xþ bðk0 � kl þ u~xÞ þ cv~xþ dw~x ¼ 0;

a~y þ bu~y þ cðk0 � kl þ v~yÞ þ dw~y ¼ 0;

a~zþ bu~zþ cv~zþ dðk0 � kl þ w~zÞ ¼ 0;

eðk0 � klÞ ¼ 0;

fiðk0 � klÞ ¼ 0;

i ¼ 1; N � 1;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð24Þ
where the subscript l stands for the characteristics. For k = k0, (24) yields
a
b ð~p � p0Þ þ bð~u� u0Þ þ cð~v� v0Þ þ dð~w� w0Þ þ eð~q� q0Þ þ

PN�1

i¼1

fið~qi � qi0Þ ¼ 0;

�a q
b k0 þ b~xþ c~y þ d~z ¼ 0;

aþ buþ cvþ dw ¼ 0;

e � 0 ¼ 0;

fi � 0 ¼ 0;

i ¼ 1; N � 1;

8>>>>>>>>>><
>>>>>>>>>>:

ð25Þ
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The coefficients e and fi can take any values that satisfy the last two equations in (25) and "i. Thus, from the

first equation in the above system we obtain q = q0 and qi = qi0. Taking into account that k0 corresponds to
a streamline, we can write that ~xv0 � ~yu0 ¼ ~zu0 � ~xw0 ¼ 0, i.e., vorticity is zero along the streamline. The

above yields the following system
ð~v� v0Þ~x� ðu� u0Þ~y ¼ 0;

ð~w� w0Þ~x� ðu� u0Þ~z ¼ 0;

q� q0 ¼ 0;

qi � qi0 ¼ 0;

i ¼ 1; N � 1.

8>>>>>><
>>>>>>:

ð26Þ
For k = k1 = k0 + s it follows from the last two equations of (24) that e = fi = 0, thus the system is

written as:
1
b ð~p � p1Þ þ b

a ð~u� u1Þ þ c
a ð~v� v1Þ þ d

a ð~w� w1Þ ¼ 0;

�a q
b ðk0 þ sÞ þ b~xþ c~y þ d~z ¼ 0;

a~xþ bð�sþ u~xÞ þ cv~xþ dw~x ¼ 0;

a~y þ bu~y þ cð�sþ v~yÞ þ dw~y ¼ 0;

a~zþ bu~zþ cv~zþ dð�sþ w~zÞ ¼ 0.

8>>>>>><
>>>>>>:

ð27Þ
This system is essentially the same as for the incompressible (constant density) flow [14,36] and its solution

for p is given by
~p ¼ p1 � qk1½~xð~u� u1Þ þ ~yð~v� v1Þ þ ~zð~w� w1Þ�. ð28Þ
Similarly, for k = k1 = k0 + s one obtains:
~p ¼ p2 � qk2½~xð~u� u2Þ þ ~yð~v� v2Þ þ ~zð~w� w2Þ�. ð29Þ
The solution of the system (26), (28) and (29) yields the following formulas for the reconstructed (tilde)

variables:
~p ¼ 1
2s ðk1p2 � k2p1 � bðR1 � R2ÞÞ;

~u ¼ u0 þ ~x
2sqR3;

~v ¼ v0 þ ~y
2sqR3;

~w ¼ w0 þ ~z
2sqR3;

~q ¼ q0;

~qi ¼ qi0;

i ¼ 1; N � 1.

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð30Þ
In (30) we have introduced the auxiliary functions R1, R2 and R3, which are given by
R1 ¼ ~xðu0 � u1Þ þ ~yðv0 � v1Þ þ ~zðw0 � w1Þ;
R2 ¼ ~xðu0 � u2Þ þ ~yðv0 � v2Þ þ ~zðw0 � w2Þ;
R3 ¼ p1 � p2 þ k2qR2 � k1qR1.

8><
>: ð31Þ
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In the limit of constant-density flow, the eigenvalues and the reconstruction formulas for the transport

CB scheme (30) correspond to the formulas obtained for incompressible, constant-density flows

[14,36].
3.2. Hybrid CB scheme

The hybrid formulation leads to the following system of equations (with respect to the flux EI):
1
bL

op
os þ ~x ou

on þ ~y ov
on þ ~z ow

on ¼ 0;

1
L

ou
os þ ðu~xþ v~y þ w~zÞ ou

on þ 1
q

op
on~x ¼ 0;

1
L

ov
os þ ðu~xþ v~y þ w~zÞ ov

on þ 1
q

op
on ~y ¼ 0;

1
L

ow
os þ ðu~xþ v~y þ w~zÞ ow

on þ 1
q

op
on~z ¼ 0;

1
L

oq
os þ ðu~xþ v~y þ w~zÞ oq

on ¼ 0;

1
L

oqi
os þ ðu~xþ v~y þ w~zÞ oqi

on ¼ 0;

i ¼ 1; N � 1;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð32Þ
The system (32) can be written in the matrix form (20), where A, (4 + N) · (4 + N), is given by:
A ¼

0 b~x b~y b~z 0 0 . . . 0
1
q~x k0 0 0 0 0 . . . 0

1
q ~y 0 k0 0 0 0 . . . 0

1
q~z 0 0 k0 0 0 . . . 0

0 0 0 0 k0 0 . . . 0

0 0 0 0 0 k0 . . . 0

. . . . . . . . . .

0 0 0 0 0 . . . . k0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

. ð33Þ
The matrix A has N + 2 eigenvalues k0 and the eigenvalues k1 = (k0 + s)/2, k2 = (k0 � s)/2, where the artifi-

cial speed of sound is given by s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ 4 b

q

q
. Application of the Riemann method for the system (32)

yields,
a 1
b ð~p � plÞ þ bð~u� ulÞ þ cð~v� vlÞ þ dð~w� wlÞ þ eð~q� qlÞ þ

PN�1

i¼1

fið~qi � qilÞ ¼ 0;

a~xþ bðk0 � klÞ ¼ 0;

a~y þ cðk0 � klÞ ¼ 0;

a~zþ dðk0 � klÞ ¼ 0;

eðk0 � klÞ ¼ 0;

fiðk0 � klÞ ¼ 0;

i ¼ 1; N � 1;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð34Þ
where the subscript l stands for the characteristics. When k = k0, (34) yields,
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a 1
b ð~p � plÞ þ bð~u� ulÞ þ cð~v� vlÞ þ dð~w� wlÞ þ eð~q� qlÞ þ

PN�1

i¼1

fið~qi � qilÞ ¼ 0;

�a q
b k0 þ b~xþ c~y þ d~z ¼ 0;

a~x ¼ 0;

a~y ¼ 0;

a~z ¼ 0;

e � 0 ¼ 0;

fi � 0 ¼ 0;

i ¼ 1; N � 1.

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð35Þ
Similarly to the transport scheme, in the present case ~q ¼ q0 and ~qi ¼ qi0. Also (35) gives a = 0, thus from

the second equation of the above system we obtain b ¼ �ðc~y þ d~zÞ=~x. Substituting the results into the first

equation, consolidating the coefficients and setting their multipliers equal to zero, we obtain:
ð~v� v0Þ~x� ð~u� u0Þ~y ¼ 0;

ð~w� w0Þ~x� ð~u� u0Þ~z ¼ 0.

�
ð36Þ
When k = k1 = (k0 + s)/2, one obtains k0 � k1 = k2 and
a
b ð~p � p1Þ þ bð~u� u1Þ þ cð~v� v1Þ þ dð~w� w1Þ þ eð~q� q1Þ þ

PN�1

i¼1

fið~qi � qi1Þ ¼ 0;

�a q
b k1 þ b~xþ c~y þ d~z ¼ 0;

a~xþ bk2 ¼ 0;

a~y þ ck2 ¼ 0;

a~zþ dk2 ¼ 0;

ek2 ¼ 0;

fik2 ¼ 0;

i ¼ 1; N � 1;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð37Þ
which yields e = 0 and fi = 0, thus leading to the following system,
a 1
b ð~p � p1Þ þ bð~u� u1Þ þ cð~v� v1Þ þ dð~w� w1Þ ¼ 0;

�a q
b k1 þ b~xþ c~y þ d~z ¼ 0;

� ~x
k2
a ¼ b;

� ~y
k2
a ¼ c;

� ~z
k2
a ¼ d.

8>>>>>>><
>>>>>>>:

ð38Þ
Substituting the expressions for the coefficients b, c and d from the last three equations into the second

equation and taking into account that ~x2 þ ~y2 þ ~z2 ¼ 1 and k1k2 = �b/q, we find that the second equation

in (38) becomes an identity. Substituting the expressions for the coefficients b, c and d into the first equation
one obtains:
a
1

b
ð~p � p1Þ � a

~x
k2

ð~u� u1Þ � a
~y
k2

ð~v� v1Þ � a
~z
k2

ð~w� w1Þ ¼ 0; ð39Þ
which yields that either we have a solution identical to zero for all the coefficients or
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~p � p1 �
b~x
k2

ð~u� u1Þ �
b~y
k2

ð~v� v1Þ �
b~z
k2

ð~w� w1Þ ¼ 0. ð40Þ
Since k2k1 ¼ � b
q, the last equation can be written as
~p � p1 þ k1q~xð~u� u1Þ þ k1q~yð~v� v1Þ þ k1q~zð~w� w1Þ ¼ 0. ð41Þ
Similarly, when k = k2 = (k0 � s)/2 we obtain k0 � k2 = k1 and
~p � p2 þ k2q~xð~u� u2Þ þ k2q~yð~v� v2Þ þ k2q~zð~w� w2Þ ¼ 0. ð42Þ
Eqs. (36), (41) and (42) lead to the following solution for the characteristics-based variables,
~p ¼ 1
s ðk1p2 � k2p1 � b R1 � R2ð ÞÞ;

~u ¼ u0 þ ~x
sqR3;

~v ¼ v0 þ ~y
sqR3;

~w ¼ w0 þ ~z
sqR3;

~q ¼ q0;

~qi ¼ qi0;

8>>>>>>>>><
>>>>>>>>>:

ð43Þ
where the auxiliary functions R1, R2 and R3 are defined by (31). Similarly to the transport scheme, in the
hybrid schemes the densities take the form of (passive) advected scalars. However, the eigenvalues as well

as the formulas for the characteristics-based pressure and velocities (tilde variables) are different.
3.3. Conservative CB scheme

We consider the system (17) and write it in the form
1
bL

op
os þ ~x ou

on þ ~y ov
on þ ~z ow

on ¼ 0;

1
L

ou
os þ ðu~xþ v~y þ w~zÞ ou

on þ 1
q

op
on~x ¼ 0;

1
L

ov
os þ ðu~xþ v~y þ w~zÞ ov

on þ 1
q

op
on ~y ¼ 0;

1
L

ow
os þ ðu~xþ v~y þ w~zÞ ow

on þ 1
q

op
on~z ¼ 0;

1
L

oq
os þ ðu~xþ v~y þ w~zÞ oq

on þ ð~x ou
on þ ~y ov

on þ ~z ow
onÞq ¼ 0;

1
L

oqi
os þ ðu~xþ v~y þ w~zÞ oqi

on þ ð~x ou
on þ ~y ov

on þ ~z ow
onÞqi ¼ 0.

8>>>>>>>>>>><
>>>>>>>>>>>:

ð44Þ
The system (44) can be written in the matrix form of (20), where A, (4 + N) · (4 + N), is given by:
A ¼

0 b~x b~y b~z 0 0 . . . 0
1
q~x k0 0 0 0 0 . . . 0

1
q ~y 0 k0 0 0 0 . . . 0

1
q~z 0 0 k0 0 0 . . . 0

0 ~xq ~yq ~zq k0 0 . . . 0

0 ~xq1 ~yq1 ~zq1 0 k0 . . . 0

. . . . . . . . . .

0 ~xqN�1 ~yqN�1 ~zqN�1 0 0 . . . k0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

. ð45Þ
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The columns and rows 6 to N + 4 correspond to the species densities. The matrix A has N + 2 eigenvalues

k0 ¼ u~xþ v~y þ w~z, and the eigenvalues k1 = 1/2(k0 + s) and k2 = 1/2(k0 � s), where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ 4 b

q

q
is the arti-

ficial speed of sound.

Applying the Riemann method [50] for the system (44) we obtain
a
b ð~p � plÞ þ bð~u� ulÞ þ cð~v� vlÞ þ dð~w� wlÞ þ eð~q� qlÞ þ

PN�1

i¼1

fið~qi � qilÞ ¼ 0;

�a q
b kl þ b~xþ c~y þ d~z ¼ 0;

a~xþ bðk0 � klÞ þ eq~xþ
PN�1

i¼1

fiqi~x ¼ 0;

a~y þ cðk0 � klÞ þ eq~y þ
PN�1

i¼1

fiqi~y ¼ 0;

a~zþ dðk0 � klÞ þ eq~zþ
PN�1

i¼1

fiqi~z ¼ 0;

eðk0 � klÞ ¼ 0;

fiðk0 � klÞ ¼ 0;

i ¼ 1; N � 1;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð46Þ
where the subscript l stands for the characteristics. For k = k0, (46) yields
a
b ð~p � p0Þ þ bð~u� u0Þ þ cð~v� v0Þ þ dð~w� w0Þ þ eð~q� q0Þ þ

PN�1

i¼1

fið~qi � qi0Þ ¼ 0;

�a q
b k0 þ b~xþ c~y þ d~z ¼ 0;

a~xþ eq~xþ
PN�1

i¼1

fiqi~x ¼ 0;

a~y þ eq~y þ
PN�1

i¼1

fiqi~y ¼ 0;

a~zþ eq~zþ
PN�1

i¼1

fiqi~z ¼ 0;

e � 0 ¼ 0;

fi � 0 ¼ 0;

i ¼ 1; N � 1.

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð47Þ
From the above system we obtain
a ¼ b
k0q

ðb~xþ c~y þ d~zÞ ð48Þ
and
e ¼ �a
1

q
�
XN�1

i¼1

fi
qi

q
¼ � b

k0q
ðb~xþ c~y þ d~zÞ �

XN�1

i¼1

fi
qi

q
. ð49Þ
Substituting the formulas for a and e into the first equation of the system (47), we obtain:
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~p � p0ð Þ 1

k0q
~x� b

b
k0q2

~x ~q� q0ð Þ þ ~u� u0ð Þ
� �

bþ ~p � p0ð Þ 1

k0q
~y � b

k0q2
y ~q� q0ð Þ þ ~v� v0ð Þ

� �
c

þ ð~p � p0Þ
1

k0q
~z� b

b
k0q2

~zð~q� q0Þ þ ð~w� w0Þ
� �

d þ
XN�1

i¼1

fi ð~qi � qi0Þ �
qi

q
ð~q� q0Þ

� �
¼ 0. ð50Þ
For a non-trivial solution of (50), the terms in the brackets should be zero, thus
ð~p�p0Þ
k0q

~x� bð~q�q0Þ
k0q2

~xþ ð~u� u0Þ ¼ 0;

ð~p�p0Þ
k0q

~y � bð~q�q0Þ
k0q2

~y þ ð~v� v0Þ ¼ 0;

ð~p�p0Þ
k0q

~z� bð~q�q0Þ
k0q2

~zþ ð~w� w0Þ ¼ 0;

ð~qi � qi0Þ � qi
q ð~q� q0Þ ¼ 0;

i ¼ 1; N � 1.

8>>>>>>><
>>>>>>>:

ð51Þ
For k = k1 = (k0 + s)/2 one can write k0 � k1 = k2. This yields,
a
b ð~p � p1Þ þ bð~u� u1Þ þ cð~v� v1Þ þ dð~w� w1Þ þ eð~q� q1Þ þ

PN�1

i¼1

fið~qi � qi1Þ ¼ 0;

�a q
b k1 þ b~xþ c~y þ d~z ¼ 0;

a~xþ bk2 þ eq~xþ
PN�1

i¼1

fiqi~x ¼ 0;

a~y þ ck2 þ eq~y þ
PN�1

i¼1

fiqi~y ¼ 0;

a~zþ dk2 þ eq~zþ
PN�1

i¼1

fiqi~z ¼ 0;

ek2 ¼ 0;

fik2 ¼ 0;

i ¼ 1; N � 1.

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð52Þ
From the last two equations, we obtain e = 0 and fi = 0, thus yielding:
a 1
b ð~p � p1Þ þ bð~u� u1Þ þ cð~v� v1Þ þ dð~w� w1Þ ¼ 0;

�a q
b k1 þ b~xþ c~y þ d~z ¼ 0;

� ~x
k2
a ¼ b;

� ~y
k2
a ¼ c;

� ~z
k2
a ¼ d.

8>>>>>>><
>>>>>>>:

ð53Þ
Multiplying the last three equations by ~x, ~y and ~z, respectively, and taking into account that ~x2 þ ~y2 þ ~z2 ¼ 1

and k1k2 ¼ � b
q, the second equation in (53) becomes an identity. Substituting the formulas for the coeffi-

cients b, c and d into the first equation of (53) we obtain
a
1

b
ð~p � p1Þ �

~x
k2

ð~u� u1Þ �
~y
k2

ð~v� v1Þ �
~z
k2

ð~w� w1Þ
� �

¼ 0; ð54Þ
which yields that either we have a solution identical to zero for all the coefficients or
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1

b
ð~p � p1Þ �

~x
k2

ð~u� u1Þ �
~y
k2

ð~v� v1Þ �
~z
k2

ð~w� w1Þ ¼ 0. ð55Þ
Because k2k1 ¼ � b
q, (55) can be written as
ð~p � p1Þ þ k1qð~xð~u� u1Þ � ~yð~v� v1Þ � ~zð~w� w1ÞÞ ¼ 0. ð56Þ

Similarly, when k = k2 = (k0 � s)/2 and k0 � k2 = k1, we obtain
ð~p � p2Þ þ k2qð~x ~u� u2ð Þ � ~y ~v� v2ð Þ � ~z ~w� w2ð ÞÞ ¼ 0. ð57Þ

The solution of (51), (56) and (57) yields the following formulas for the characteristics-based variables,
~p ¼ 1
s ðk1p2 � k2p1 � bðR1 � R2ÞÞ;

~u ¼ u0 þ ~x
sqR3;

~v ¼ v0 þ ~y
sqR3;

~w ¼ v0 þ ~z
sqR3;

~q ¼ q0 þ q
b p � p0 þ k0

s R3

� 	
;

~qi ¼ qi0 þ qi
b p � p0 þ k0

s R3

� 	
;

8>>>>>>>>>><
>>>>>>>>>>:

ð58Þ
where the auxiliary functions R1, R2 and R3 are defined by (31). The eigenvalues obtained for the con-

servative scheme are the same with those obtained for the hybrid scheme; these correspond to the eigen-

values obtained by other researchers for variable density flow equations [39,41,51]. The formulas for

pressure and velocities are the same with those obtained for the hybrid scheme. The density formulas

for the three schemes are different: compare the last two equations in (30), (43) and (58). For the

conservative scheme the density formulas include a pseudo-compressibility term. Numerical experiments

presented in Part II of this study reveal that the addition of the pseudo-compressibility term increases the

speed of propagation of density disturbances, which in turn leads to faster convergence both in steady

and time-dependent flows.

3.4. Intercell variables interpolation

For the calculation of the characteristics flow variables Vl = (pl,ul,vl,wl,ql,qi,l)
T (l = 0,1,2), at the cell

faces we employ Godunov-type discretization. Note that k1 and k2 are always positive and negative, respec-

tively, thus obtaining
V0 ¼ VLþVR

2
� signðk0Þ VR�VL

2
;

V1 ¼ VL;

V2 ¼ VR;

8><
>: ð59Þ
where sign(k0) = 1 or �1 for k0 > 0 and k0 < 0, respectively. The variables with indices �L� and �R� denote left
and right states of intercell values that are calculated by polynomial interpolation.

Different versions of first, second and higher-order interpolation schemes can be found in [14]. In Appen-

dix A we present the derivation of different orders of interpolation including first-order,
VL;jþ1=2 ¼ Vj; VR;jþ1=2 ¼ Vjþ1; ð60Þ
second-order
VL;jþ1=2 ¼ 3
2
Vj � 1

2
Vj�1;

VR;jþ1=2 ¼ 3
2
Vjþ1 � 1

2
Vjþ2;

(
ð61Þ
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and third-order,
VL;jþ1=2 ¼ 5
6
Vj � 1

6
Vj�1 þ 1

3
Vjþ1;

VR;jþ1=2 ¼ 5
6
Vjþ1 � 1

6
Vjþ2 þ 1

3
Vj.

(
ð62Þ
For problems encompassing sharp interfaces such as Rayleigh–Taylor instabilities, flux limiting versions

of the intercell interpolation can be employed. For further discussion on flux limiters we refer the reader

to [14]. Finally, we mention that the viscous fluxes in (11) are discretized by second-order central

differences.

3.5. Summary of advective flux calculation

The numerical steps for the calculation of the advective flux are summarized below:
Step 1: Calculate the eigenvalues kl for l = 0,1,2 using the velocities u, v and w from the previous time

step.

Step 2: Use (59) in conjunction with first, second or third-order interpolation to calculate the left and

right states of the characteristics variables. For each eigenvalue, we calculate one set of primitive vari-
ables along the characteristics.

Step 3: Use formulas (30), (43) or (58) – depending on the choice of the scheme – to calculate the recon-

structed characteristics-based variables.

Step 4: Use the characteristics-based (tilde) variables to calculate the advective flux at the cell faces of

the control volume.
The above four steps are performed for the calculation of the advective fluxes in n, g and f directions.

Then, the discretized flux derivatives are added (including the viscous fluxes in the case of the Navier–
Stokes equations) and the system of equations is iterated in time using a time integration scheme. In this

study, we use a fourth-order Runge–Kutta scheme which is presented in Section 4.
4. Time integration

The system of equations is solved in pseudo-time for each real-time step. This is achieved by using a

fourth-order Runge–Kutta scheme [56] in conjunction with a nonlinear multigrid method [55]. The
fourth-order Runge–Kutta scheme is written as
U1 ¼ Un;

U2 ¼ Un �
Ds
2
RHSðU1Þ;

U3 ¼ Un �
Ds
2
RHSðU2Þ;

U4 ¼ Un � DsRHSðU3Þ;

Unþ1 ¼ Un �
Ds
6
ðRHSðU1Þ þ 2RHSðU2Þ þ 2RHSðU3Þ þRHSðU4ÞÞ;

ð63Þ
where RHS represents the right-hand side of the Navier–Stokes operator in (11). The time step on each

Runge–Kutta iteration is locally defined according to the convergence requirements of the advective part

of the Navier–Stokes equations. However, for flows at low Reynolds or Peclet numbers the pseudo-time
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step should be restricted for stability purposes. Therefore, it is defined locally according to the convergence

requirements of inviscid, viscous and diffusion parts of the Navier–Stokes equations:
1 Alw
Dsi;j;k ¼ min Dsinvi;j;k;Ds
vis
i;j;k;Ds

diff
i;j;k

� �
;

Dsinvi;j;k ¼
CFLinv

ðmaxm¼1–6fðjk1j;jk2jÞgmÞi;j;k
;

Dsvisi;j;k ¼
CFLvisRe

4ðmaxn¼1;2;3ðdlnÞÞi;j;k
;

Dsdiffi;j;k ¼
CFLvisPe

4ðmaxn¼1;2;3ðdlnÞÞi;j;k
;

8>>>>>>><
>>>>>>>:

ð64Þ
where dln denotes the computational cell dimension in the three directions n = n,g,f and m stands for the
index of the cell face.
5. Constant density limit

In this section, we examine (30), (43) and (58) in the limit of constant-density incompressible flows. We

remind that the formulas for constant-density, incompressible flow [14,36] are given by
~U ¼

~p

~u

~v

~w

0
BBB@

1
CCCA ¼

1
2s ðk1k2 � k2k1Þ

R~xþ u0ð~y2 þ ~z2Þ � v0~x~y � w0~x~z

R~y þ v0ð~x2 þ ~z2Þ � w0~z~y � u0~x~y

R~zþ w0ð~y2 þ ~x2Þ � v0~z~y � u0~x~z

0
BBB@

1
CCCA; ð65Þ
where
R ¼ 1

2s
½p1 � p2 þ ~xðk1u1 � k2u2Þ þ ~yðk1v1 � k2v2Þ þ ~zðk1w1 � k2w2Þ�; ð66Þ

k1 ¼ p1 þ k1ðu1~xþ v1~y þ w1~zÞ; ð67Þ
k2 ¼ p2 þ k2ðu2~xþ v2~y þ w2~zÞ. ð68Þ
We consider first the transport CB scheme. Setting density equal to one,1 the formula (30) and the corre-
sponding eigenvalues are written as
p ¼ 1
2s ðk1p2 � k2p1 � bðR1 � R2ÞÞ;

u ¼ u0 þ ~x
2s R3;

v ¼ v0 þ ~y
2s R3;

w ¼ w0 þ ~z
2s R3;

k0;1;2 ¼ k0; k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ b

q
.

8>>>>>>><
>>>>>>>:

ð69Þ
Using k1k2 = �b, we can modify the formula for pressure as follows:
p ¼ 1

2s
ðk1p2 � k2p1Þ þ

k1k2
2s

ð~xðu2 � u1Þ þ ~yðv2 � v1Þ þ ~zðw2 � w1ÞÞ

¼ 1

2s
ðk1ðp2 þ k2ð~xu2 þ ~yv2 þ ~zw2ÞÞ � k2ðp1 þ k1ð~xu1 þ ~yv1 þ ~zw1ÞÞÞ; ð70Þ
ays working with dimensionless variables, thus for constant density flows the dimensionless density would be equal to one.
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which is exactly the same as for the incompressible, constant-density case [14,36]. Similarly, for the u veloc-

ity we obtain
u ¼ u0 þ ~xRþ ~x
2s

ðk2 � k1Þð~xu0 þ ~yv0 þ ~zw0Þ ¼ ~xR� ð1þ ~x2Þu0 � ~x~yv0 � ~x~zw0

¼ ~xRþ ð~y2 þ ~z2Þu0 � ~x~yv0 � ~x~zw0; ð71Þ
where the auxiliary function R is given by (66). Eq. (71) is the same as for the incompressible, constant-

density case (65). The results for the other two velocity components can be obtained in a similar fashion.

In the constant density limit the characteristics-based solutions for the hybrid (43) and conservative (58) CB

schemes become identical, therefore, it is sufficient to present the analysis only for one of these formulations.

Let us consider the variables for the conservative CB scheme (58) and set density equal to one in the for-
mulas for pressure, velocities and eigenvalues,
~p ¼ 1
s ðk1p2 � k2p1 � bðR1 � R2ÞÞ;

~u ¼ u0 þ ~x
s R3;

~v ¼ v0 þ ~y
s R3;

~w ¼ v0 þ ~z
s R3;

k0;1;2 ¼ k0;
k0�

ffiffiffiffiffiffiffiffiffi
k20þ4b

p
2

.

8>>>>>>><
>>>>>>>:

ð72Þ
Defining k�1 ¼ 2k1, k
�
2 ¼ 2k2 and b* = 4b, (72) are written as
~p ¼ 1
2s k�1p2 � k�2p1 � b�

2
ðR1 � R2Þ

� 	
;

~u ¼ u0 þ ~x
2s R3;

~v ¼ v0 þ ~y
2s R3;

~w ¼ v0 þ ~z
2s R3;

k0; k
�
1;2 ¼ k0; k0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ b�

q
;

8>>>>>>>><
>>>>>>>>:

ð73Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where s ¼ k20 þ b� and k�1;2 ¼ k0 � s. The pressure and eigenvalues in (73) cannot be brought into the form

(65). Thus, (73) provides a new characteristics-based scheme for constant-density incompressible flows. At

this stage, it is interesting to examine the numerical behavior of the conservative and transport schemes for

constant-density incompressible flows. Computations were performed for the flow through a sudden expan-

sion–contraction. The problem has been previously studied both computationally and experimentally

[52,53]. Experiments [52] and previous simulations [53,54] have shown that depending on the Reynolds

number the flow through a sudden expansion–contraction may exhibit symmetric or asymmetric flow sep-

aration. We have carried out computations for two Reynolds numbers, Re = 30 and Re = 116 that corre-
spond to symmetric and asymmetric separation, respectively (Fig. 3). The computational grid contained

37 · 37 and 237 · 109 points in the small channels and main section, respectively. To measure the difference

in the results between the variants of the schemes, the maximum of the pressure difference, throughout the

flow field, pdiff, was used
pdiff ¼ max
i;j

pconsi;j � ptransi;j

ptransi;j

����
����� 100; ð74Þ
where the �cons� and �trans� denote the conservative and transport variants; the latter is identical to the ori-

ginal characteristics-based scheme when the density is considered constant. The computations revealed that

the difference in the results between the conservative variant and the original constant-density version of the

scheme do not exceed 0.06% and 0.07% for symmetric and asymmetric cases, respectively.



Fig. 3. Computational results for the flow through a sudden expansion–contraction (Re = 30) and (Re = 116). The differences in the

results between transport and conservative schemes do not exceed 0.07%. The hybrid and conservative schemes become identical for

constant density flows. (a) Re = 30, (b) Re = 116.

Table 1

Number of multigrid cycles required to achieve reduction of the residuals by four orders of magnitude for the computations of the

incompressible (constant-density) flow through a sudden expansion–contraction

Re = 30 Re = 116

Transport scheme 33 68

Hybrid/conservative scheme 26 49
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However, the transport and conservative formulations exhibit some differences in the convergence.

Table 1 shows the number of multigrid cycles required to achieve four orders of magnitude reduction

of the residuals for the transport and conservative schemes.2 This fact motivated a detailed investigation

of the multigrid convergence of characteristics-based schemes for variable-density incompressible flows

(see Part II of this study).
6. Conclusions

To date the artificial compressibility formulation has received scant attention in connection with the sim-

ulation of variable-density incompressible flows. In this paper, we presented the derivation of characteris-

tics-based schemes for variable-density incompressible flows in the framework of artificial-compressibility

formulation. We have shown that artificial compressibility results in three different numerical formulations,

which subsequently lead to three variants of characteristics-based schemes.

The transport scheme uses the divergence-free condition in the (total) density transport equation. The

conservative scheme uses the equations in a fully conservative form. In the hybrid scheme the conservative
equation for the total density is used to eliminate the density variable from the momentum equations, while

similar to the transport variant, the divergence-free condition is employed to simplify the species transport

equations. The above formulations result in different characteristics-based schemes. With regard to the den-

sity field, the transport and hybrid schemes lead to reconstruction of species densities along the streamlines,

whereas the conservative scheme leads to a reconstruction formula that contains pseudo-compressibility
2 The hybrid scheme becomes identical the conservative scheme in the constant-density limit.
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terms. Moreover, the transport scheme differs from the conservative and hybrid schemes with respect to pres-

sure and velocity formulas.

The numerical behavior of the schemes was examined in the limit of constant density incompressible

flows. It was shown that the reconstruction formulas for the transport scheme become the same with the

corresponding ones for the characteristics-based scheme for constant-density incompressible flows.For
constant density flows the formulas for the hybrid and conservative schemes become identical. They,

however, differ with regard to the original formulas obtained for constant-density incompressible flow.

In effect, the constant-density limit of hybrid/conservative scheme can also be considered as a new version

of the characteristics-based scheme for constant density flows. With regard to the behavior of the schemes

in the limit of constant-density flows, numerical experiments were carried out showing that both hybrid/

conservative and transport schemes provide the same accuracy but differ in terms of convergence (measured

here by the number of multigrid cycles). The multigrid implementation of the above methods as well as

detailed studies to assess their accuracy and efficiency in steady and unsteady variable-density flows are
presented in [57].
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Appendix A

Consider the one-dimensional stencil (equidistant grid in the computational space) and define two states,

left and right, for the intercell variables, as follows
VL;jþ1=2 ¼ aVj � bVj�1 þ cVjþ1 þ dVjþ2 ð75Þ
for the left state, and
VR;jþ1=2 ¼ aVjþ1 � bVjþ2 þ cVj þ dVj�1 ð76Þ
for the right state. The coefficients a, b, c and d are determined according to the following procedure:

The derivative of the characteristic variable at the cell center for the case of a positive eigenvalue – the

result will be analogous if a negative eigenvalue is considered – yields
oV

on

� �
j

¼ VL;jþ1=2 � VL;j�1=2 ¼ aVj � bVj�1 þ cVjþ1 þ dVjþ2

¼ ðaVj�1 � bVj�2 þ cVj þ dVjþ1Þða� cÞVj � ðaþ bÞVj�1 þ bVj�2 þ ðc� dÞVjþ1 þ dVjþ2.

ð77Þ
By developing all variables in a Taylor series expansion around the cell center j, (77) yields
oV

on

� �
j

¼ ða� cÞVj � ðaþ bÞ½Vj � Vð1Þ þ Vð2Þ � Vð3Þ þ Vð4Þ� þ b½Vj � 2Vð1Þ þ 4Vð2Þ � 8Vð3Þ þ 16Vð4Þ�

þ ðc� dÞ½Vj þ Vð1Þ þ Vð2Þ þ Vð3Þ þ Vð4Þ� þ d½Vj þ 2Vð1Þ þ 4Vð2Þ þ 8Vð3Þ þ 16Vð4Þ�; ð78Þ
where the superscripts denote order of derivatives and the denominators in the Taylor series expansion have

been omitted and can be considered to be part of the unknown coefficients which are yet to be determined;

the grid spacing is considered to be equal to one since we are working in the computational space. Eq. (78)
is written as
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oV

on

� �
j

¼ ða� bþ cþ dÞVð1Þ þ ½c� aþ 3ðbþ dÞ�Vð2Þ þ ½cþ aþ 7ðd � bÞ�Vð3Þ þ ½c� aþ 15ðbþ dÞ�Vð4Þ.

ð79Þ

Using (79) schemes of different order of accuracy can be derived.

	 First-order upwind scheme for
a ¼ 1 and b ¼ c ¼ d ¼ 0. ð80Þ

The left and right states of the variables at the cell face are accordingly defined by
VL;jþ1=2 ¼ Vj; VR;jþ1=2 ¼ Vjþ1. ð81Þ
	 The second-order scheme is obtained for c = d = 0,
a� b ¼ 1; ð82Þ
for satisfying the CFL like restriction, i.e., having the coefficient of the first-order derivative equal to one,
and
3b� a ¼ 0; ð83Þ

for eliminating the second-order derivative term from (79). From (82) and (83) the values a = 3/2 and

b = 1/2 are obtained. The left and right states are accordingly defined by
VL;jþ1=2 ¼ 3
2
Vj � 1

2
Vj�1;

VR;jþ1=2 ¼ 3
2
Vjþ1 � 1

2
Vjþ2.

(
ð84Þ
	 The third-order scheme is obtained for d = 0, the CFL-like restriction
a� bþ c ¼ 1; ð85Þ

and the following conditions for eliminating the second- and third-order derivative terms from (79)
3b� aþ c ¼ 0;

a� 7bþ c ¼ 0.

�
ð86Þ
Eqs. (85) and (86) give the values a = 5/6, b = 1/6 and c = 1/3. The left and right states are accordingly

defined
VL;jþ1=2 ¼ 5
6
Vj � 1

6
Vj�1 þ 1

3
Vjþ1;

VR;jþ1=2 ¼ 5
6
Vjþ1 � 1

6
Vjþ2 þ 1

3
Vj.

(
ð87Þ
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